Friday 15 December 2017

Przejście średnia proces autokoromcja


2 1 Przenoszenie modeli modelu średnich modeli. Modele serii czasowej znane jako modeli ARIMA mogą obejmować pojęcia autoregresyjne i średnie ruchy. W pierwszym tygodniu dowiedzieliśmy się, że termin autoregresji w modelu szeregów czasowych dla zmiennej xt jest opóźnioną wartością xt Na przykład , warunek autoregresji 1 opóźnienia wynosi x t-1 pomnożony przez współczynnik. Ta lekcja definiuje średnie ruchome średnie. Średni ruch w modelu szeregów czasowych to błąd w przeszłości pomnożony przez współczynnik. Nagajmy nadrzędny N 0, sigma 2w, co oznacza że wagi są identycznie, niezależnie rozdzielane, każdy z rozkładem normalnym o średniej 0 i tej samej wariancji. Średni model przenoszenia 1 rzędu, oznaczony przez MA 1 jest równy. xt mu wt theta1w. Średni model rzędowy, oznaczony symbolem 2. xt mu wt theta1w theta2w. Średni model rzędu q, oznaczony przez MA q. xt mu wt theta1w theta2w kropki thetaqw. Uwaga Wiele podręczników i programów definiuje model z negatywnymi znakami przed warunkami To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne szacowanych wartości współczynników i nieokreślonych warunków w wzory dla ACF i wariancji Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń, aby prawidłowo napisać szacowany model R korzysta z pozytywnych oznaczeń w modelu leżącym u podstaw, tak jak to ma miejsce. Teoretyczne właściwości serii czasowej z model MA 1.Należy zwrócić uwagę, że jedyną niższą wartością w teoretycznym ACF jest dla opóźnienia 1 Wszystkie pozostałe autokorelacje są równe 0 W ten sposób próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA 1. Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do tej broszury. Przykład 1 Załóżmy, że model MA 1 to xt 10 wt 7 w t-1, w którym przewyższa N 0,1 Tak więc współczynnik 1 0 7 Th e teoretyczne ACF jest podane przez. Za podstawie poniższego wykresu ACF przedstawiona jest teoretyczna ACF dla MA 1 z 1 0 7 W praktyce próbka wygrała t zazwyczaj zapewnia taki wyraźny wzór Używając R, symulowaliśmy n 100 wartości próbki przy użyciu modelu xt 10 w 7 w t-1 gdzie w t. iid N 0,1 Dla tej symulacji, szeregowy szereg wykresów z przykładowych danych Poniżej możemy powiedzieć wiele z tej wykresu. Przykładowy ACF dla symulacji dane następują Widzimy skok przy opóźnieniu 1, a następnie ogólnie wartości nieistotne dla opóźnień 1 Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorcem MA 1, co oznacza, że ​​wszystkie autokorelacje dla opóźnień 1 będą 0 A inna próbka miałaby nieco odmienną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby tę samą szeroką charakterystykę. Właściwości teoretyczne serii czasowej z modelem MA 2. Dla modelu MA 2, teoretyczne właściwości są następujące. Zwróć uwagę, że jedyny niż zerowy wartości w teoretycznym ACF dotyczą opóźnień 1 i 2 Autocorrelat jony dla wyższych opóźnień są równe 0 Więc próbka ACF o znacznych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA2.iid N 0,1 Współczynniki to 1 0 5 i 2 0 3 Ponieważ jest to MA 2, ten teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezależnych autokorelacji są takie, jak wykresy teoretycznego ACF. Jak prawie zawsze jest tak, dane próbki wygrały t zachowują się dość tak doskonale jak teoria Symulujemy n 150 wartości próbek dla modelu xt 10 wt 5 w t-1 3 w t-2 gdzie w t. iid N 0,1 Seria szeregów czasowych wykresów danych jak następuje dane z próbki MA1 można wiele powiedzieć. Przykładowy ACF dla symulowanych danych Poniższy wzorzec jest typowy dla sytuacji, w których może być użyteczny model MA 2 Istnieją dwa statystycznie znaczące kolce przy opóźnieniach 1 i 2, a następnie nie - znaczne wartości dla innych opóźnień Zauważ, że z powodu błędu pobierania próbek próbka ACF nie była zgodna dokładny opis teoretyczny. ACF dla General MA q Models. A właściwość modeli MA q w ogóle jest to, że istnieją niezerowe autokorelacje dla pierwszych q opóźnień i autokorelacji 0 dla wszystkich opóźnień q. Niezależność połączenia między wartościami 1 i rho1 w modelu MA 1 W modelu MA 1, dla dowolnej wartości równej 1 1 odwzorowanie 1 daje tę samą wartość dla przykładu. Użyj 0 5 dla 1, a następnie użyj 1 0 5 2 dla 1 Otrzymasz rho1 0 4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility", ograniczamy modele MA1 do wartości z wartością bezwzględną mniejszą niż 1 W podanym przykładzie, 1 0 5 będzie dozwoloną wartością parametru, podczas gdy 1 1 0 5 2 nie będzie. Odwracalność modeli MA. Nazwa typu MA jest odwracalna, jeśli jest algebraiczna równoważna modelowi AR z nieskojarzonym zbiegiem Zbieżność, oznacza to, że współczynniki AR zmniejszają się do 0, gdy wracamy w czasie. Invertibility to ograniczenie zaprogramowane w oprogramowanie serii czasu używane do oszacowania współczynnika modele modeli z hasłami MA nie jest czymś, co sprawdzamy w analizie danych Dodatkowe informacje na temat ograniczenia wstrząsów dla modeli MA 1 podano w dodatku. Uwagi wstępne Uwaga: Model MA q z określonym ACF jest tylko jeden model odwracalny Warunkiem koniecznym do odwrócenia jest to, że współczynniki mają takie wartości, że równanie 1- 1 y - - qyq 0 zawiera rozwiązania dla y, które leżą poza kołem jednostkowym. R Kod dla przykładów. W przykładzie 1 wykreślono teoretyczne ACF modelu xt 10 wt 7w t-1, a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych Polecenia R służące do sporządzenia teoretycznej ACF były. acfma1 ARMAacf ma c 0 7, 10 opóźnień ACF dla MA 1 z theta1 0 7 opóźnień 0 10 tworzy zmienną o nazwie opóźnienia waha się od 0 do 10 opóźnień wydruku, acfma1, xlim c 1,10, ylab r, typu h, głównego ACF dla MA 1 z theta1 0 7 abline h 0 dodaje oś poziomą do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie o nazwie acfma1 naszego wyboru. Konstrukcja poleceń poleceń trzeciego polecenia jest opóźniona w stosunku do wartości ACF dla opóźnień 1 do 10 Parametr ylab etykietuje na osi y, a główny parametr ustawia wartość tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF wystarczy użyć polecenia acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. lista ma c 0 7 Symuluje n 150 wartości z MA 1 x xc 10 dodaje 10, aby uzyskać średnio 10 domyślnych wartości symulacji dla x wykresu x, typ b, główne Symulowane dane MA 1 acf x, xlim c 1,10, główne ACF dla symulacji dane przykładowe. W przykładzie 2 wykreślono teoretyczny ACF modelu xt 10 wt 5 w t-1 3 w t-2, a następnie symulowano n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla symulacji dane Zastosowano komendy R. acfma2 ARMAacf ma c 0 5,0 3, acfma2 opóźnienia 0 10 opóźnień w wydruku, acfma2, xlim c 1,10, ylab r, typ h, główne ACF dla MA 2 z theta1 0 5, theta2 0 3 abline h 0 lista ma c 0 5, 0 3 x xc 10 wykres x, typ b, główny Symulowany model MA 2 Seria acf x, xlim c 1,10, główny ACF dla symulowanego MA 2 Dane. Podpis Dowodu Własności MA 1 Dla zainteresowanych studentów, oto dowody na teoretyczne właściwości modelu MA1. Tekst zmienności xt tekst mu wt theta1 w 0 tekst tekst wt tekstowy theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. W przypadku h 1, poprzedni wyrażenie 1 w 2 Dla każdego h 2 , poprzedni wyrażenie 0 Powodem jest to, że z definicji niezależności wt E wkwj 0 dla dowolnego kj Ponadto, ponieważ wt mają średnie 0, E wjwj E wj 2 w 2. Dla serii czasowych. Przyprowadź ten wynik, aby uzyskać ACF podany powyżej. Można odwrócić model MA jest to, że można napisać jako nieskończony model AR zamówienia, które zbieżne tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie z powrotem w czasie Pokażemy invertibility dla modelu MA 1. Następnie relacja substytucyjna 2 dla t-1 w równaniu 1. 3 zt wt theta1 z - theta1w wt theta1z - theta2w. At równanie t-2 staje się równaniem 2. Następnie zastępujemy relację 4 dla w t-2 w równaniu 3. zt wt teta1 z - theta 21w wagi theta1z - theta 21 z - theta1w wagi theta1z - theta1 2z theta 31w. Jeśli mielibyśmy kontynuować nieskończoność otrzymamy model AR bez końca. zt wt theta1 z-theta 21z theta 31z - theta 41z dots. Note jednak należy pamiętać, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać nieskończenie w rozmiarze podczas ruchu w czasie Aby temu zapobiec, potrzebujemy 1 1 Jest to warunek niewymiennego modelu MA 1. Model nieskoordynowanego zamówienia MA. W tygodniu 3 zobaczymy, że model AR1 można przekształcić w model MA bez końca. xt - mu wt phi1w phi 21w kropki phi k1 w kropkach sum phi j1w. Powyższe sumienie przeszłych hałasu białego jest znane jako przyczyna reprezentacji AR1 Innymi słowy, xt jest specjalnym typem MA o nieskończonej liczbie terminów cofanie się w czasie To jest nazywany nieskończonym rzędem MA lub MA Skończone rzędu MA jest nieskończonym porządkiem AR i dowolnym skończonym zleceniem AR jest nieskończonym zleceniem MA. Recall w tygodniu 1 zauważyliśmy, że wymóg stacjonarnego AR 1 jest taki, 1 1 Niech s obliczy Var xt używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowego faktu o seriach geometrycznych, które wymagają phi1 1, w przeciwnym wypadku szeregowe rozbieżności.2 1 Modele przenoszenia średnich modeli. Model modeli czasowych znany jako modele ARIMA może obejmować autoregresję wyrażenia i średnie ruchy W tygodniu 1 dowiedzieliśmy się, że termin autoregresji w modelu szeregowym czasowym dla zmiennej xt jest opóźnioną wartością xt Na przykład, terminem autoregresji 1x jest x t-1 pomnożony przez współczynnik Ta lekcja definiuje średnia ruchoma. mov średnia długość w modelu szeregów czasowych jest błędem z przeszłości pomnożonym przez współczynnik. Zważywszy na N0, sigma 2w, co oznacza, że ​​wagi są identycznie, niezależnie rozdzielane, każdy z normalnym rozkładem mającym średnią 0 i tą samą zmiennością. Średni model przenoszenia rzędu 1, oznaczony przez MA 1 jest. xt mu wt theta1w. Średni model rzędowy, oznaczony symbolem 2. xt mu wt theta1w theta2w. Średni model rzędu q, oznaczony przez MA q. xt mu wt theta1w theta2w kropki thetaqw. Uwaga Wiele podręczników i programów definiuje model z negatywnymi znakami przed warunkami To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne szacowanych wartości współczynników i nieokreślonych warunków w wzory dla ACF i wariancji Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń, aby prawidłowo napisać szacowany model R korzysta z pozytywnych oznaczeń w modelu leżącym u podstaw, tak jak to ma miejsce. Teoretyczne właściwości serii czasowej z model MA 1.Należy zwrócić uwagę, że jedyną niższą wartością w teoretycznym ACF jest dla opóźnienia 1 Wszystkie pozostałe autokorelacje są równe 0 W ten sposób próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA 1. Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do tej broszury. Przykład 1 Załóżmy, że model MA 1 to xt 10 wt 7 w t-1, w którym przewyższa N 0,1 Tak więc współczynnik 1 0 7 Th e teoretyczne ACF jest podane przez. Za podstawie poniższego wykresu ACF przedstawiona jest teoretyczna ACF dla MA 1 z 1 0 7 W praktyce próbka wygrała t zazwyczaj zapewnia taki wyraźny wzór Używając R, symulowaliśmy n 100 wartości próbki przy użyciu modelu xt 10 w 7 w t-1 gdzie w t. iid N 0,1 Dla tej symulacji, szeregowy szereg wykresów z przykładowych danych Poniżej możemy powiedzieć wiele z tej wykresu. Przykładowy ACF dla symulacji dane następują Widzimy skok przy opóźnieniu 1, a następnie ogólnie wartości nieistotne dla opóźnień 1 Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorcem MA 1, co oznacza, że ​​wszystkie autokorelacje dla opóźnień 1 będą 0 A inna próbka miałaby nieco odmienną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby tę samą szeroką charakterystykę. Właściwości teoretyczne serii czasowej z modelem MA 2. Dla modelu MA 2, teoretyczne właściwości są następujące. Zwróć uwagę, że jedyny niż zerowy wartości w teoretycznym ACF dotyczą opóźnień 1 i 2 Autocorrelat jony dla wyższych opóźnień są równe 0 Więc próbka ACF o znacznych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA2.iid N 0,1 Współczynniki to 1 0 5 i 2 0 3 Ponieważ jest to MA 2, ten teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezależnych autokorelacji są takie, jak wykresy teoretycznego ACF. Jak prawie zawsze jest tak, dane próbki wygrały t zachowują się dość tak doskonale jak teoria Symulujemy n 150 wartości próbek dla modelu xt 10 wt 5 w t-1 3 w t-2 gdzie w t. iid N 0,1 Seria szeregów czasowych wykresów danych jak następuje dane z próbki MA1 można wiele powiedzieć. Przykładowy ACF dla symulowanych danych Poniższy wzorzec jest typowy dla sytuacji, w których może być użyteczny model MA 2 Istnieją dwa statystycznie znaczące kolce przy opóźnieniach 1 i 2, a następnie nie - znaczne wartości dla innych opóźnień Zauważ, że z powodu błędu pobierania próbek próbka ACF nie była zgodna dokładny opis teoretyczny. ACF dla General MA q Models. A właściwość modeli MA q w ogóle jest to, że istnieją niezerowe autokorelacje dla pierwszych q opóźnień i autokorelacji 0 dla wszystkich opóźnień q. Niezależność połączenia między wartościami 1 i rho1 w modelu MA 1 W modelu MA 1, dla dowolnej wartości równej 1 1 odwzorowanie 1 daje tę samą wartość dla przykładu. Użyj 0 5 dla 1, a następnie użyj 1 0 5 2 dla 1 Otrzymasz rho1 0 4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility", ograniczamy modele MA1 do wartości z wartością bezwzględną mniejszą niż 1 W podanym przykładzie, 1 0 5 będzie dozwoloną wartością parametru, podczas gdy 1 1 0 5 2 nie będzie. Odwracalność modeli MA. Nazwa typu MA jest odwracalna, jeśli jest algebraiczna równoważna modelowi AR z nieskojarzonym zbiegiem Zbieżność, oznacza to, że współczynniki AR zmniejszają się do 0, gdy wracamy w czasie. Invertibility to ograniczenie zaprogramowane w oprogramowanie serii czasu używane do oszacowania współczynnika modele modeli z hasłami MA nie jest czymś, co sprawdzamy w analizie danych Dodatkowe informacje na temat ograniczenia wstrząsów dla modeli MA 1 podano w dodatku. Uwagi wstępne Uwaga: Model MA q z określonym ACF jest tylko jeden model odwracalny Warunkiem koniecznym do odwrócenia jest to, że współczynniki mają takie wartości, że równanie 1- 1 y - - qyq 0 zawiera rozwiązania dla y, które leżą poza kołem jednostkowym. R Kod dla przykładów. W przykładzie 1 wykreślono teoretyczne ACF modelu xt 10 wt 7w t-1, a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych Polecenia R służące do sporządzenia teoretycznej ACF były. acfma1 ARMAacf ma c 0 7, 10 opóźnień ACF dla MA 1 z theta1 0 7 opóźnień 0 10 tworzy zmienną o nazwie opóźnienia waha się od 0 do 10 opóźnień wydruku, acfma1, xlim c 1,10, ylab r, typu h, głównego ACF dla MA 1 z theta1 0 7 abline h 0 dodaje oś poziomą do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie o nazwie acfma1 naszego wyboru. Konstrukcja poleceń poleceń trzeciego polecenia jest opóźniona w stosunku do wartości ACF dla opóźnień 1 do 10 Parametr ylab etykietuje na osi y, a główny parametr ustawia wartość tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF wystarczy użyć polecenia acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. lista ma c 0 7 Symuluje n 150 wartości z MA 1 x xc 10 dodaje 10, aby uzyskać średnio 10 domyślnych wartości symulacji dla x wykresu x, typ b, główne Symulowane dane MA 1 acf x, xlim c 1,10, główne ACF dla symulacji dane przykładowe. W przykładzie 2 wykreślono teoretyczny ACF modelu xt 10 wt 5 w t-1 3 w t-2, a następnie symulowano n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla symulacji dane Zastosowano komendy R. acfma2 ARMAacf ma c 0 5,0 3, acfma2 opóźnienia 0 10 opóźnień w wydruku, acfma2, xlim c 1,10, ylab r, typ h, główne ACF dla MA 2 z theta1 0 5, theta2 0 3 abline h 0 lista ma c 0 5, 0 3 x xc 10 wykres x, typ b, główny Symulowany model MA 2 Seria acf x, xlim c 1,10, główny ACF dla symulowanego MA 2 Dane. Podpis Dowodu Własności MA 1 Dla zainteresowanych studentów, oto dowody na teoretyczne właściwości modelu MA1. Tekst zmienności xt tekst mu wt theta1 w 0 tekst tekst wt tekstowy theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. W przypadku h 1, poprzedni wyrażenie 1 w 2 Dla każdego h 2 , poprzedni wyrażenie 0 Powodem jest to, że z definicji niezależności wt E wkwj 0 dla dowolnego kj Ponadto, ponieważ wt mają średnie 0, E wjwj E wj 2 w 2. Dla serii czasowych. Przyprowadź ten wynik, aby uzyskać ACF podany powyżej. Można odwrócić model MA jest to, że można napisać jako nieskończony model AR zamówienia, które zbieżne tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie z powrotem w czasie Pokażemy invertibility dla modelu MA 1. Następnie relacja substytucyjna 2 dla t-1 w równaniu 1. 3 zt wt theta1 z - theta1w wt theta1z - theta2w. At równanie t-2 staje się równaniem 2. Następnie zastępujemy relację 4 dla w t-2 w równaniu 3. zt wt teta1 z - theta 21w wagi theta1z - theta 21 z - theta1w wagi theta1z - theta1 2z theta 31w. Jeśli mielibyśmy kontynuować nieskończoność otrzymamy model AR bez końca. zt wt theta1 z-theta 21z theta 31z - theta 41z dots. Note jednak należy pamiętać, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać nieskończenie w rozmiarze podczas ruchu w czasie Aby temu zapobiec, potrzebujemy 1 1 Jest to warunek niewymiennego modelu MA 1. Model nieskoordynowanego zamówienia MA. W tygodniu 3 zobaczymy, że model AR1 można przekształcić w model MA bez końca. xt - mu wt phi1w phi 21w kropki phi k1 w kropkach sum phi j1w. Powyższe sumienie przeszłych hałasu białego jest znane jako przyczyna reprezentacji AR1 Innymi słowy, xt jest specjalnym typem MA o nieskończonej liczbie terminów cofanie się w czasie To jest nazywany nieskończonym rzędem MA lub MA Skończone rzędu MA jest nieskończonym porządkiem AR i dowolnym skończonym zleceniem AR jest nieskończonym zleceniem MA. Recall w tygodniu 1 zauważyliśmy, że wymóg stacjonarnego AR 1 jest taki, 1 1 Niech s obliczy Var xt używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowego faktu o seriach geometrycznych, które wymagają phi1, w przeciwnym wypadku szeregowe odchylenia. Procedury kontroli losowości. powłoki adiuwantowe Box i Jenkins, pp 28-32 są powszechnie spotykane, użyte narzędzie do sprawdzania przypadkowości w zbiorze danych Ta przypadkowość jest określana przez obliczanie autokorelacji dla wartości danych w różnym czasie opóźnień Jeśli przypadkowe, takie autokorelacje powinny być bliskie zera dla dowolnego i wszystkich odstępów czasowych Jeśli nie losowe, to jedna lub więcej autocorrelatio ns będzie znacząco nierezero - walne. Ponadto, wykresy autokorelacji są wykorzystywane w etapie identyfikacji modelu dla modeli autoregresji Box-Jenkins, poruszających się średnich serii czasowych. Współczynnik jest tylko jedną miarą losowości. Uwaga, że ​​niekolorowa niekoniecznie oznacza przypadkowe dane ma znaczną autokorelację nie jest losowa Jednak dane, które nie wykazują znacznej autokorelacji, mogą nadal wykazywać nie losowość w inny sposób Autokorelacja jest tylko jedną miarą losowości W kontekście walidacji modelu, która jest pierwotnym typem przypadkowości, którą porozmawiamy w podręczniku, sprawdzenie autokorelacji jest zazwyczaj wystarczającym testem losowości, ponieważ reszty z modeli o słabych dopasowaniach wykazują tendencję do nietypowego losowania. Jednak niektóre aplikacje wymagają bardziej rygorystycznego określania losowości. W tych przypadkach bateria testów może obejmować sprawdzanie autokorelacji, są stosowane, ponieważ dane mogą być nie losowe w wielu różnych i często subtelnych Przykładem tego, gdzie jest bardziej rygorystyczne sprawdzanie losowości, byłoby badanie generatorów liczb losowych. Powtarzanie próbek powinno być zbliżone do zera dla przypadkowości. Taki przypadek nie występuje w tym przykładzie, a zatem nie można się spodziewać przypadkowości. Ta autokorelacja próbki wykres pokazuje, że szereg czasowy nie jest przypadkowy, ale ma wysoki stopień autokorelacji między sąsiednimi i sąsiednimi obserwacjami. Określenie rh versus h. Przydziały współzależności są tworzone przez. Oś pionowa Współczynnik autokorelacji. gdzie C h jest funkcją autokorelacji. a C 0 jest funkcją wariancji. Należy zauważyć, że R h mieści się między -1 a 1.Uwaga, że ​​niektóre źródła mogą używać następującego wzoru dla funkcji autokorelacji. Chociaż ta definicja ma mniej stronniczości, preparat 1N ma pewne pożądane właściwości statystyczne i jest formą najczęściej stosowaną w literaturze statystycznej Patrz strona 20 i 49-50 w Chatfield w celu uzyskania szczegółowych informacji. oś pozioma Czas opóźnienia hh 1, 2, 3. Powyższa linia również con zawiera kilka poziomych linii odniesienia Linia środkowa jest równa zeru Pozostałe cztery linie to 95 i 99 pasm zaufania Zauważ, że istnieją dwa różne wzory służące do generowania pasm zaufania. Jeśli wykres autokorelacji jest używany do testowania losowości tj. nie ma czasu W przypadku, gdy N jest wielkością próbki, z jest zbiorczą funkcją rozkładu normalnego rozkładu normalnego a alfa jest poziomem istotności W tym przypadku pasma ufności mają stałą szerokość, która zależy od próbki rozmiar Jest to formuła wykorzystywana do generowania pasm zaufania na powyższym wykresie. Wykresy autocorelacji są również stosowane w etapie identyfikacji modelu w celu dopasowania modeli ARIMA W tym przypadku przyjmuje się model średniej ruchomej dla danych i następujących zakresów ufności powinien być wygenerowany. gdzie k jest opóźnieniem, N jest wielkością próbki, z jest zbiorczą funkcją rozkładu normalnego rozkładu normalnego, a alfa poziom istotności W tym przypadku zakresy ufności wzrastają wraz ze wzrostem opóźnienia. Wykres autokorelacji może dostarczyć odpowiedzi na następujące pytania. Czy dane są przypadkowe? Czy obserwacja dotyczy sąsiedniej obserwacji. Czy obserwacja dotyczyła obserwacji dwukrotnie - usunięte itp. Czy obserwowane szeregi czasowe białe szumy. Jest to obserwowany szereg czasowy sinusoidalny. Jest to obserwowany szereg czasowy autoregresywny. Jaki jest odpowiedni model dla zaobserwowanych szeregów czasowych. Jest model. valid i wystarczający. Is wzorze ss sqrt valid Istotność Zapewnienie prawidłowości wniosków inżynierskich. Skuteczność wraz ze stałym modelem, stałą odmianą i stałą dystrybucją jest jednym z czterech założeń, które zazwyczaj stanowią podstawę wszystkich procesów pomiarowych. Założenie przypadkowe ma zasadnicze znaczenie z następujących trzech powodów. Większość standardowych testów statystycznych zależy od losowość Właś ciwość wniosków testów jest bezpoś rednio zwiĘ ... zana z ważnoś ciĘ ... przyję cia losowego. użyte wzory statystyczne zależą od założenia losowości, najczęściej stosowaną formułą jest formuła określania odchylenia standardowego średniej próbki. gdzie s jest odchyleniem standardowym danych Chociaż jest to mocno stosowane, wyniki stosowania tego wzoru nie mają wartości, chyba że przypadkowe założenie holds. For danych jednowymiarowych, domyślny model. Jeżeli dane nie są losowe, model ten jest nieprawidłowy i nieważny, a szacunki dla parametrów, takich jak stała się nonsensyczna i nieważna. Krótko mówiąc, jeśli analityk nie nie sprawdzić losowości, wtedy ważność wielu statystycznych wniosków staje się podejrzana. Wykres autokorelacji jest doskonałym sposobem sprawdzenia losowości.

No comments:

Post a Comment